about GPILS

The Graduate Program in Life Sciences (GPILS) offers cutting-edge research training in basic, biomedical, clinical, and population sciences. Graduate programs in biochemistry and molecular biology, epidemiology and human genetics, gerontology, molecular medicine, molecular microbiology and immunology, neuroscience, physical rehabilitation science, and toxicology award PhD and/or MS degrees and provide integrative training. Following the structural elucidation of the genome, graduates meet the demands of the era as they translate biomedical advances to patients and communities. Students are well prepared for careers in academia, industry, or government. The University of Maryland campus is located a few blocks from Baltimore’s Inner Harbor, which is an ideal location within the nexus of biomedical research on the East Coast, providing students with access to an unparalleled level of expertise.

programs and training

GPILS’s eight programs cover the entire range of biomedical research—from the basics of protein structure and molecular biology, through integrative systems physiology, virology, and vaccine development, to behavior-, cognition-, and population-based genetics, prospective studies, and the impact of the environment on human health. Each independent degree-granting program maintains its own admission criteria and standards for advancement and graduation. Programs are independent from departments and consist of faculty from basic science and clinical departments in the schools of dentistry and medicine, the Institute for Genome Sciences, the Institute of Human Virology, and other University of Maryland research centers, institutes, and campuses. This structure provides greater coordination among the graduate programs in order to better serve the training and education needs of graduate students. GPILS strives to provide student researchers with the tools needed to solve many of the problems facing humankind today and to anticipate and hopefully prevent those emerging in the future. Program graduates who do not pursue careers in research go on to successful careers in governmental agencies, private biotech and pharmaceutical companies, venture capital firms, academic policy and administration, patent law, scientific writing and editing, consulting, and more.
The University of Maryland (UM) campus is located on the Westside of downtown Baltimore, just a few blocks from the Inner Harbor. UM consists of seven professional schools, including the Graduate School and the schools of dentistry, law, medicine, nursing, pharmacy, and social work. Physicians, scientists, medical students, postdoctoral scholars, and graduate students work side by side in state-of-the-art facilities including the University of Maryland BioPark. The School of Medicine operates in partnership with the University of Maryland Medical Center, the R Adams Cowley Shock Trauma Center, and the Baltimore Veterans Affairs Medical Center, where faculty members treat patients and conduct studies. This affords students many clinical opportunities.

The academic community gathers annually at the GPILS Awards Ceremony. A committee comprised of faculty, staff, graduate students, and postdoctoral fellows reviews a large and highly competitive pool of nominees for the various award categories. Each student and postdoc award winner has his or her name engraved on a plaque that is housed in the GPILS office and receives a cash prize in addition to the award trophy. Awards are given in the categories of PhD Scholar, Postdoctoral Scholar, PhD Thesis Project, Teacher of the Year, and The Otani Award, which is awarded to the graduate who excels both academically and for service to the community. This event is attended by students, postdocs, faculty mentors, and senior University leadership. Following the award presentations there is always a lively reception enjoyed by all.

The GPILS Annual Distinguished Lectureship is one of the premiere lecture events on campus and is widely attended by the University community and by other academics in the greater Baltimore area. The goal of this lectureship is to provide an opportunity for students, postdoctoral scholars, and faculty to hear an internationally renowned scientist, who is not a member of the University of Maryland faculty, discuss his or her research and “career story.” The opportunity to invite and secure the speaker for this event is rotated between the eight PhD-granting graduate programs. The day of the lecture, students attend a luncheon with the speaker. Following the seminar there is a reception and dinner.
The Program in Biochemistry and Molecular Biology has established an environment where students at all stages of their graduate careers interact on a regular basis. Over the last 10 years, the program has had a consistent enrollment of 40 graduate students who go on to conduct postdoctoral work at such renowned institutions as the National Institutes of Health, the Scripps Research Institute, Johns Hopkins University, and Harvard University, prior to obtaining permanent positions in academia, national laboratories, or in private industry/pharmaceutical companies.

The Program in Biochemistry and Molecular Biology has been training students for more than 20 years at both the UM and UMBC campuses. Association with the two campuses has led this program to a significant increase in training opportunities for students. Many faculty members participate in NIH training programs, including the programs in membrane biology and muscle biology training at UM, and programs studying the chemistry/biochemistry interface and Meyerhoff training at UMBC. Students also have opportunities to conduct highly sophisticated research in state-of-the-art core facilities and research organizations including UM’s Nuclear Magnetic Imaging Core, the Center for Fluorescence Spectroscopy, the Institute of Human Virology, and the University of Maryland Marlene and Stewart Greenebaum Cancer Center. Basic research is key to advancing biomedical research. The premier research done by faculty and postdoctoral and graduate students in the Program in Biochemistry and Molecular Biology impacts many diseases, including cancer, heart disease, and AIDS.
research focus areas
DNA Repair
Fluorescence Spectroscopy
Gene Expression and Regulation
Muscle Biology
Protein and Nucleic Acid Structure

contacts
Gerald M. Wilson, PhD
Program Co-Director
410-706-8904
gwilson@som.umaryland.edu

Michael Summers, PhD
Program Co-Director
410-455-2527
summers@hhmi.umbc.edu

Foyeke Daramola
Program Coordinator
108 N. Greene St.
Baltimore, MD 21201
410-706-8417 | 410-706-8294 fax
fdaramola@som.umaryland.edu

biochemistry.umaryland.edu
The Program in Epidemiology and Human Genetics offers a diverse array of integrated opportunities to develop skills for discovering how population, molecular, and genetic variations relate to health and disease. These skills are essential for translating new basic research findings into clinical practice and applying them to public health. New findings from epidemiology and human genetics research consistently make the news. Students in this program become leaders in improving the health of local, regional, and global populations. The program combines traditional areas of biomedical, genetic, clinical, and community studies with opportunities to learn and apply observational, biostatistical, molecular, and genomic tools in their investigations.

A valuable resource for students is the program’s multidisciplinary faculty, which is made up of epidemiologists, human geneticists, physicians, social scientists, statisticians, and computer scientists who collaborate with colleagues at the National Institutes of Health, the Centers for Disease Control, the Maryland Department of Health and Mental Hygiene, the Food and Drug Administration, and various other agencies. Faculty in the program explore risk factors for and the natural history of disease processes, assess the effectiveness of medical and behavioral interventions, and design studies to better understand health behavior. They investigate genetic influences on health and disease, elucidating the mechanisms through which genes act. The program includes three distinct, yet intersecting, tracks, each with its own curriculum: epidemiology; molecular epidemiology; and human genetics and genomic medicine.

The epidemiology track has a strong quantitative focus, providing students with the tools needed to conduct world-class research on epidemiologic questions and to participate in multidisciplinary research in a wide range of specialties. Training concentrates on understanding the biological, behavioral, social, environmental, and organizational determinants of disease and health outcomes.

Recent student dissertation projects have examined the persistence of malaria in certain hot spots in Thailand, the emergence of staphylococcus infections, gender differences in bladder cancer risk, autoimmune disease and breast cancer, and the effects of sun exposure and vitamin D on multiple sclerosis risk and progression.

The molecular epidemiology track is designed for students who wish to undertake research that combines molecular, genetic, and epidemiologic techniques and apply them to the understanding of human health and disease. Recent advances in genomics have added a new dimension to the understanding of risk factors for disease transmission and acquisition. Students in this track develop...
a solid knowledge base in epidemiology and biostatistics, while gaining the laboratory and informatics skills needed to incorporate genomic data into their research. The genetic structure of malaria and its effect on vaccine success in Mali, risk factors for childhood diarrhea in Bangladesh, optimal universal precautions for treating patients with hospital-acquired infections, and markers for inflammation and depression among hip fracture patients are just a few of the diverse dissertation topics examined by students in this track.

The human genetics and genomic medicine track offers training for students who want to understand human genetic variation and its relation to health and disease. Students first receive a broad overview of human genetics (molecular, biochemical, clinical, cytogenetics, and genetic epidemiology/genomics), and then specialize in their particular areas of interest. The track utilizes a multidisciplinary team approach to research training involving faculty from across the campus. Recent students have carried out research in a range of areas, including mechanisms of DNA repair, clinical genetics and screening, gene mapping in simple and complex diseases, gene discovery and function, recombination and mutation in bacteria that cause human disease, and characterization of chromosomal diversity in an Amish population.
The Program in Gerontology is a dual-campus program at the University of Maryland (UM) and the University of Maryland, Baltimore County (UMBC) that began in 2001. The program provides an interdisciplinary and integrative perspective on the process of human aging and the experiences of growing old. It acknowledges the complex, dynamic, and bidirectional relationships among individuals and the historical, political, economic, environmental, psychological, social, cultural, and biological contexts in which human aging occurs. The goal of the program is to train a new generation of gerontology scholars conversant with interdisciplinary and integrative paradigms and research designs employed to examine the unique, reciprocal, and dynamic nature of aging in context. UM’s six professional schools (dentistry, law, medicine, nursing, pharmacy, and social work) and UMBC’s College of Arts, Humanities, and Social Sciences (departments of economics, psychology, public policy, and sociology and anthropology) combine to make this mission possible.

Epidemiology Track
Students gain the fundamental knowledge and skills required to conduct studies on the health and well-being of older populations. Students are prepared to address questions on the incidence and prevalence of disease and disability and the use of health and long-term care services in older persons; the causes and consequences of these diseases, disabilities, and service use; and the identification and evaluation of strategies for preventing disease and disability, and maximizing function and appropriate use of health care services.

Policy Track
The policy track provides students with an understanding of the policy-making process and the forces affecting it, the tools and concepts for analyzing policies, and an understanding of how to conduct research designed to inform policy. Students learn to apply this body of knowledge to policy issues in aging, including health and long-term care, economic security, work and retirement, and housing.

Social, Cultural, and Behavioral Sciences Track
Students in this track develop a biopsychosocial perspective that looks at human actions and the group, structures, and social norms for aging from an integrated, interdisciplinary perspective that links research from the macrosocietal level, through group and organizational influences, to the individual’s behavioral and psychological outcomes.
tracks

Epidemiology
Policy
Social, Cultural, and Behavioral Sciences

contacts

Denise Orwig, PhD
Program Co-Director
410-706-8951
dorwig@epi.umaryland.edu

Leslie Morgan, PhD
Program Co-Director
410-455-2074
lmorgan@umbc.edu

Justine Golden, MA
Program Manager
660 W. Redwood St., Ste. 200
Baltimore, MD 21201
410-706-4926 | 410-706-4433
jgold002@umaryland.edu

gerontologyphd.umaryland.edu
The number of students in the program has doubled during the last 10 years with more than 40 students currently enrolled. Students graduating from the program secure increasingly high-quality positions in academic, government, and industry research organizations, including several graduates who have become University faculty members.

The Program in Molecular Microbiology and Immunology—formerly the Department of Microbiology and Immunology Graduate Program—has been training students for over 30 years. Associations with the Center for Vaccine Development, the Institute of Human Virology, and the Institute for Genome Sciences provide a significant increase in training opportunities for students. The faculty in the Program in Molecular Microbiology and Immunology perform cutting-edge research in several areas, including bacterial pathogenesis, vaccine development, HIV, malaria, inflammation, cellular immunology, and the evolution of the immune system. The collaborative nature of the research and the congenial personalities involved ensure a friendly and interactive environment where students and faculty thrive. With over 75 faculty members from the schools of dentistry and medicine, the Institute of Human Virology, the Institute for Genome Sciences, and a National Institutes of Health training grant providing additional funding for graduate education, the program provides a broad range of research and training opportunities in these scientific disciplines.
research areas
Bacterial Pathogenesis
Cell Biology
Fungal Pathogenesis
Immunology
Parasitology
Virology

contacts
Nicholas Carbonetti, PhD
Program Director
410-706-7677
ncarbone@umaryland.edu

June Green
Program Coordinator
660 W. Redwood St.
Howard Hall, Room 324-C
Baltimore, MD 21201
410-706-7126 | 410-706-2129 fax
jgreen@umaryland.edu

microbiology.umaryland.edu
The Program in Molecular Medicine offers an interdisciplinary program of study and research that provides students with the knowledge and research skills required for a successful research career in the biomedical sciences. The Program in Molecular Medicine has three research tracks—cancer biology; molecular physiology and pharmacology; and genome biology—which together encompass a unique interdisciplinary research and graduate training program that is ideally suited for training scientists for future biomedical research. The program faculty contains over 150 talented biomedical researchers who investigate a wide range of biological questions highly relevant to human health.

Students in the cancer biology track investigate oncogenes, tumor suppressor genes, pathways of DNA damage and repair, cell cycle regulation, growth factors, angiogenesis, metastasis, and other topics. Students in the molecular physiology and pharmacology track are uncovering the causes and mechanisms of Alzheimer's disease, cardiac arrhythmias, atherosclerosis, cystic fibrosis, diabetes, heart failure, hypertension, kidney disease, infertility, osteoporosis, muscular dystrophy, and stroke. Students in the genome biology track gain hands-on experience with bioinformatics and genomics tools and learn how to apply these platforms to biological questions.

During their first semester, all molecular medicine students join students from other graduate programs for a course called “Mechanisms in Biomedical Science,” which offers a comprehensive overview of current knowledge in cellular, molecular, and structural biology. This modular course provides all of the background necessary for subsequent specialized studies in biomedical research and equips students with the critical-thinking skills required for successful studies in molecular medicine. Following completion of this course, students choose the molecular medicine track they wish to study and begin one of three laboratory rotations. Through these rotations, students obtain hands-on laboratory experience and identify their thesis mentor. In the second semester of their first year, students begin courses specific to their chosen track.
During the second semester of their second year, students prepare for their qualifying exam by writing a research proposal on a topic of their choice, usually related to their research. They defend the proposal in an oral qualifying exam, which tests the breadth and depth of their knowledge and their ability to integrate knowledge and apply it to a research problem. Upon successful completion of the qualifying exam, students are admitted to candidacy to pursue their thesis research under the direction of their mentor and an advisory committee. During their training students are encouraged to present their results at national and international meetings and are strongly encouraged to publish their results in top-tier journals. Students usually complete their PhD program during their fifth year.
Established as an interdepartmental, interschool program in 1996, the Program in Neuroscience has quickly gained a national reputation, enhancing interaction among faculty and enabling graduate students to take advantage of the full depth and breadth of neuroscience research conducted at the University. PhD students are highly sought after and routinely appointed as postdoctoral fellows at prestigious institutions. MD/PhD graduates have been awarded highly competitive residencies at top teaching hospitals. The program’s structure encourages and assists students in submitting individual grants to federal and private funding agencies.

Neuroscience faculty expertise and research interests range from the genome to the clinic. This stimulates horizontal and vertical integration and creates a dynamic research environment. This uniquely integrative milieu provides outstanding, individualized graduate training. Graduate students are exposed to research at multiple levels of analysis and are mentored by faculty with diverse research interests and experimental approaches.

The Program in Neuroscience faculty come from diverse departments and schools across the campus, facilitating student access to a number of different research strategies and models within neuroscience. They have been internationally recognized in diverse fields including chemical senses, drug and alcohol abuse, epilepsy, learning and memory, neuroendocrinology, neuroprotection, neurodegeneration, synaptic plasticity, pain, and psychiatric diseases. The highly interactive faculty members are loosely organized into areas of interest called focus groups. These focus groups facilitate faculty and student interactions at multiple levels including the development of novel courses, journal clubs, special seminars, program project grants, and National Institutes of Health-funded training grants.

This highly collegial, interdisciplinary program prepares students to be competitive during their tenure at the University and after graduation.
research focus groups

- Addiction
- Autism
- Chemosensory
- Clinical Neuroscience
- Cognitive Neuroscience
- Developmental Neurobiology
- Molecular Neuroscience
- Mood and Anxiety Disorders
- Neurodegeneration
- Neuroendocrinology
- Neuroimaging
- Neuroprotection
- Pain
- Schizophrenia
- Synapses and Circuits

contacts

Bruce Krueger, PhD
Director of Graduate Education
410-706-5065
bkrueger@umaryland.edu

Jennifer Aumiller, MEd
Program Manager
685 W. Baltimore St.
HSF I, Room 212
Baltimore, MD 21201
410-706-4701 | 410-706-6040 fax
neurosci@umaryland.edu

neuroscience.umaryland.edu
The Program in Physical Rehabilitation Science was established in 1999 in direct response to the dearth of scientists investigating the mechanisms, diagnoses, and treatment of physically debilitating and disabling medical conditions. The program derives its faculty from a core of scientists in basic and applied science disciplines and medical specialties who have diverse training and interests. Investigators in the program are among the leading scholars in their respective fields and are recipients of major research grants. By graduation, students become highly productive scientists as exemplified by numerous journal article publications and scientific presentations. Many have obtained individual funding for their work before graduation. Graduates hold professorships and postdoctoral fellowships at highly esteemed academic and research institutions across the United States. Students admitted to the program are broadly trained in research methods, statistics, and scientific instrumentation. Students also complete coursework and a dissertation in the major concentration area of neuromotor control and neurorehabilitation and supportive subconcentration areas including applied physiology, rehabilitation biomechanics, epidemiology, and rehabilitation engineering.

Major research interests include motor control of balance and locomotion related to falls in aging, neuromotor control and neurorehabilitation after stroke and in Parkinson’s disease, children with developmental coordination disorder, neuroplasticity, neuroimaging, and rehabilitation robotics. A variety of contemporary and innovative approaches are used to understand the neuromotor, physiological, biomechanical, and behavioral bases of movement problems that lead to dysfunction and disability, and to develop rehabilitation interventions for optimizing movement function and preserving independence. Studies employ 3-D motion analysis and kinetic and electromyographic recording techniques to evaluate localized and whole-body movements. Neuromotor control mechanisms and neuroplasticity are investigated using transcranial magnetic stimulation, functional magnetic resonance imaging and other imaging techniques, electroencephalography, acoustic startle, peripheral nerve and muscle stimulation, and clinical functional testing. Robotic applications are used to study and rehabilitate limb and whole-body movement problems. Rehabilitation engineering and modeling approaches further advance the application of new technologies for diagnostic and intervention development.
tracks
Applied Physiology
Biomechanics
Epidemiology of Disability
Neuromotor Control

contacts
Mark Rogers, PT, PhD
Program Director
410-706-0841
mrogers@som.umaryland.edu

Terry Heron
Program Coordinator
100 Penn St.
Allied Health Building, Room 115-C
Baltimore, MD 21201
410-706-5215 | 410-706-6387 fax
theron@som.umaryland.edu

rehabscience.umaryland.edu
Research opportunities in molecular and mechanistic toxicology focus on mechanisms of cellular responses to environmental chemicals, drugs, and radiation in mammalian systems. Students are trained in modern molecular biology, biochemical, and knockout animal model approaches used to investigate complex biological processes, including oxidative and free radical stress, cell signaling in cell survival and death, cell cycle control, and cell proliferation and differentiation. Faculty research areas include carcinogenesis, chemoprotection, developmental abnormalities, neurological, cardiovascular and renal system toxicity and protection, aging, and mechanisms of drug action and drug development. Opportunities to study mechanisms of action of environmental endocrine disruptors in vertebrate and invertebrate aquatic organisms are available at the UM Chesapeake Biological Laboratory, a marine research center located on the Chesapeake Bay (www.umces.edu/cbl).

The Program in Toxicology’s Toxicology and Environmental Health track offers graduate training and research opportunities in forensic and analytical toxicology, risk assessment and environmental law, and environmental epidemiology. Research opportunities focus on analytical methods development for illicit drugs, health effects of ambient air particulate matter in urban and rural areas, new methods of exposure assessment, and the role of genetic polymorphisms in individual susceptibility to adverse health effects of environmental and occupational chemicals.
The University of Maryland (UM) campus is located in downtown Baltimore, just blocks from the Inner Harbor and a wide variety of shopping, dining, and entertainment options. The Inner Harbor is also home to the National Aquarium, Baltimore; the Maryland Science Center; Oriole Park at Camden Yards; Ravens Stadium; and Harborplace and the Gallery.

campus center

The Southern Management Corporation (SMC) Campus Center at UM provides space for students, faculty, and staff to come together. The Wellness Hub, URecFit, Student Life Services, Event Services, and Bon Appétit, are all housed within the SMC Campus Center, which is conveniently connected to the Health Sciences and Human Services Library. The SMC Campus Center provides a variety of spaces for students to use including study areas and spa-like relaxation rooms. In addition to a pool and world-class exercise facilities, URecFit provides a diverse array of group exercise options including spin classes, aerobics, and yoga. The programming provided by the Wellness Hub staff is aimed at helping the University community enjoy a healthy work-life balance through a robust set of ongoing workshops, small group activities, and weekend expeditions that take students off campus for activities such as hiking and kayaking tours of Washington, D.C.’s capital area.

financial support and housing

PhD students are guaranteed a highly competitive stipend and complete remission of tuition and health insurance for the duration of their studies. The cost of living in Baltimore is surprisingly reasonable especially when compared to other similarly sized cities on the East Coast. Residents of Baltimore City and the surrounding suburbs enjoy ample public transportation options in addition to a wide array of housing choices. Students that are interested in living on campus have several options including the Pascault Row Apartments and Fayette Square Apartments, which combine the best features of luxury apartment living with the essentials for today’s sophisticated scholar, all within blocks of school.
The reason Baltimore is known as “Charm City” has a lot to do with the people who live here. Residents are uniquely unpretentious and take great pride in their city, neighborhoods, and sports teams. When they say, “Welcome to Bawlmer, Hon!” (in that wonderfully unique Baltimore accent), the endearment is not in jest. Baltimoreans are an extraordinarily welcoming bunch, which is part of the reason so many visitors return again and again.

Baltimore

Feeling hungry? Baltimore is best known for its seafood, particularly crab cakes and steamed blue crabs. Make sure to ask a local for restaurant recommendations—they are usually very opinionated about where to find the best crabs and crab cakes. The stalls of Baltimore’s world famous public markets offer cuisine to suit any palate. On the Eastside of the Harbor students will find historic Little Italy. Residents and visitors to the city’s eclectic neighborhoods enjoy dining options ranging from popular neighborhood pubs and bistros to well-known restaurants offering world-class cuisine and dining experiences.

eats

Within walking distance of the campus are M&T Bank Stadium and Oriole Park at Camden Yards, home to the Baltimore Ravens and Baltimore Orioles, respectively. Baltimore is also home to a number of museums dedicated to just about everything from art and history to pop culture, sports, and dentistry. Historic sites and monuments can be found throughout the area. Students who are interested in the dramatic can find small art-house theatre, touring Broadway productions, and everything in between. Those with a passion for music won’t be disappointed—Baltimore has many noted venues for live music.

culture
GPILS students benefit from a well-developed yet always evolving curriculum. Training is available in both the biomedical and population sciences and includes an integrated biomedical sciences core course that provides students in the laboratory-based programs with a solid foundation for more advanced course work and specialized studies. Each program tailors its courses to ensure student success.

core course

During the first semester of study the majority of students take what is considered GPILS’s “core course”—Mechanisms in Biomedical Sciences: From Genes to Disease. An eight-credit class, this course is a comprehensive overview of current knowledge in cellular, molecular, and structural biology. Providing all of the background necessary for subsequent specialized studies in biomedical research in a concentrated program, the innovative format of this course is highly interactive. Mechanisms in Biomedical Sciences: From Genes to Disease includes lectures presenting creative, cutting-edge approaches to investigating fundamental and current biomedical questions in concert with a review of the fundamental principles of molecular and cellular biology. Vertically integrated topics tie together the study of individual genes, proteins, cellular function, and associated clinical disorders and place an emphasis on the development and critical evaluation of scientific hypotheses and state-of-the-art techniques.

ethics

In research ethics, students examine data collection and ownership, issues in the use of human and animal subjects, the responsibilities of authorship, the identification and handling of conflicts of interest, scientific misconduct, the peer review system, collaborative research in academia and industry, mentor/mentee relationships, contemporary ethical issues, and the role of the scientist as a responsible member of society. Topics of discussion are “ripped from the headlines.” Engaging in interactive discussions related to recent events in the scientific world adds to the relevance of the course.
All courses make use of educational support technologies including online delivery of content, resources, and discussions via Blackboard and the Blackboard Mobile Learn app for iPads, iPhones, and BlackBerrys. Students access readings, notes, and PowerPoint files that are provided in advance of each lecture and can download MP4 and MP3 (video and audio) recordings of lectures, which are posted following each lecture for students to use as study aids and references. Recently, GPILS implemented an iPad pilot program in which all PhD students enrolled in the GPILS core course receive an iPad. Faculty are now utilizing an iPad-based, e-click solution in class, which allows students to anonymously respond to questions from their iPads. The aggregated results are then displayed in bar-chart format on both the presentation screens of the lecture hall and on their iPad screens. This interactive engagement helps to steer the direction of lectures and enhances the overall learning experience. Also, as part of the iPad pilot program, students, faculty, and support staff are testing numerous apps including iAnnotate PDF, which provides students with a powerful PDF reading and annotation solution and has allowed the GPILS core course to go nearly paperless.

This state-of-the-art facility, which opened in 1998, provides wireless access, more than 900 seats, 1,500 data connections, 40 study rooms, three microcomputer classrooms, and a distance education center. The HS/HSL staff also provide a well-developed series of monthly workshops on research and presentations skills and on emerging technologies that enhance collaborations, communications, and professional efficiencies. As the second largest health science library on the East Coast, and the intellectual heart of the campus, over 370,000 volumes and 3,500 print and digital subscriptions are housed within this architecturally striking building.
University of Maryland (UM) faculty take mentoring seriously and view the development of students as one of the most important factors in the success of their respective research goals. Plainly put: student researchers are highly valued and respected. As faculty train the next generation of scientists, they strive to provide them with the tools needed to solve many of the problems facing humankind today and to anticipate and hopefully prevent those emerging in the future.

GPILS boasts an impressive faculty with whom students can choose to do their dissertation research. Faculty members represent a large and diverse research enterprise that spans many departments, centers, institutes, and several of the schools across the campus. This allows students access to a number of different research strategies and models and provides unparalleled opportunities to engage in multidisciplinary collaborations. Students also benefit from a collegial and highly interactive atmosphere that is rare amongst top-tier researchers. To read more about UM faculty, visit the GPILS program website.

GPILS graduate programs seek to engage student researchers in hands-on research as soon as possible—many programs have lab rotations as part of their curriculum. If they are taking the core course, students typically begin lab rotations as soon as the core course ends. Lab rotations are essential in that, by giving several labs of interest a trial run, students are well-equipped to select a mentor with whom they will find success. Many programs also offer “professor’s rounds” where students learn about potential mentors through a series of informal “chalk-talks” where professors discuss the research they are conducting.
seminars, journal clubs, and retreats

Many GPILS programs and research areas host their own seminars, journal clubs, and retreats. There are so many seminars on campus that students sometimes have a hard time picking which ones to attend. It is important to give students as many opportunities to learn outside of the classroom as possible. Journal clubs give students the chance to present and defend important new literature to colleagues. Retreats allow students to interact with their colleagues and mentors in a different environment and to immerse themselves in specific topic areas, and to present their research during poster sessions or short talks. Many program retreats stress the importance of taking a break almost as much as they stress scientific dialog. Those retreats include activities ranging from Frisbee and horseshoes to volleyball and rafting trips.

travel to conferences

Traveling to relevant scientific conferences and eventually presenting at these conferences is a key part of a student researcher’s development. These meetings provide students with the opportunity to network with researchers from other institutions and develop the types of professional relationships that foster collaborations and often lead to employment opportunities following graduation.
GPILS students are highly sought after—routinely winning appointments as postdoctoral fellows at prestigious labs or securing careers in a wide range of areas including governmental agencies, private biotech and pharmaceutical companies, venture capital firms, academic policy and administration, patent law, scientific writing and editing, consulting, and more.

career development
GPILS recognizes the ever-evolving professional environment that graduates have before them. The degree and expertise they acquire during their course of study provides them with a wide array of career opportunities, and to that end, the program is committed to providing student researchers with a well-rounded training program and the support they need to excel in the career of their choice. Students enjoy a wide range of career development activities, seminars, and workshops that are vital to success in today’s market. Career development opportunities include a “Careers Away From the Bench” seminar series (followed by Q&A luncheons with speakers); workshops on grant writing and publication submission; effective research presentations; developing a CV; networking, interviewing, and negotiation skills; and a workshop on differentiating oneself in the employment marketplace. Also, students have access to an expansive series of workshops on lab leadership and project management. GPILS student researchers are prepared for today’s and tomorrow’s career opportunities.

publications, awards, and grants
GPILS students are regularly recognized for outstanding contributions to their fields at national and international conferences, as well as by GPILS and the University of Maryland for their contributions to the University’s research enterprise. Students typically publish first-author papers in top-tier scientific journals and have a high rate of obtaining successfully funded individual research grants. Being able to list these types of accomplishments on their CVs helps graduates differentiate themselves from the pack.
Alex Drohat, PhD
Biochemistry and Molecular Biology; 1997
MENTOR: David Weber, PhD
THESIS TITLE: "The Three-Dimensional Structure and Subunit Association of S100B in the Apo and Ca(II)-Bound States, and Its Ca(II)-Dependent Interaction With Target Proteins"
CURRENTLY: Assistant Professor, Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine

Richard Lovering, PhD, PT
Physical Therapy and Rehabilitation Science; 2003
MENTOR: Patrick De Deyne, PhD
THESIS TITLE: “Eccentric Contraction-Induced Skeletal Muscle Injury and Its Consequences for the Sarcolemma and the Associated Cytoskeleton”
CURRENTLY: Assistant Professor, Department of Orthopedics, University of Maryland, School of Medicine

John Teijaro, PhD
Molecular Microbiology and Immunology; 2009
MENTOR: Donna Farber, PhD
THESIS TITLE: "Memory CD4 T Cell Heterogeneity and Protection Against Influenza Virus Infection"
CURRENTLY: Senior Research Associate, Viral Immunobiology Laboratory, The Scripps Research Institute

Nicole Hoppman-Chaney, PhD
Epidemiology and Human Genetics; 2007
MENTOR: Braxton Mitchell, PhD, MPH
CURRENTLY: Co-Director of the Clinical Cytogenetics Laboratory, Mayo Clinic

David Schwwope, PhD
Toxicology; 2011
MENTOR: Marilyn Huestis, PhD
THESIS TITLE: “Free and Glucuronidated Cannabinoids, Subjective, Physiological, and Psychomotor Effects and in vitro Cannabinoid Stability Following Controlled Smoked Cannabis Administration”
CURRENTLY: Research Scientist, Aegis Sciences Corporation

John Hagerman, PhD
Molecular Medicine; 2010
MENTOR: Ronald Gartenhaus, MD
THESIS TITLE: "Targeting the Translational Machinery as a Novel Treatment Strategy for Non-Hodgkin Lymphoma"
CURRENTLY: Research Fellow in Biological Chemistry and Molecular Pharmacology, Harvard Medical School

Patrick Hagner, PhD
Neuroscience; 2008
MENTOR: Margaret McCarthy, PhD
THESIS TITLE: “A Critical Role for Glutamate in the Organizational Effects of Estriol on the Developing Hypothalamus”
CURRENTLY: Postdoctoral Fellow, Duke University, School of Medicine

Jaclyn Schwarz, PhD
Epidemiology and Human Genetics; 2007
MENTOR: Ann Gruber-Baldini, PhD
THESIS TITLE: “Differentiated Patterns and Determinants of Functional Dependency in Assisted Living Residents With and Without Dementia”
CURRENTLY: Assistant Professor, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine

Quincy Miles Samus, PhD, MS
Gerontology; 2007
MENTOR: Braxton Mitchell, PhD, MPH
CURRENTLY: Assistant Professor, Department of Orthopedics, University of Maryland, School of Medicine