Skip to main content

Core Concentration & Cognate Areas

Neuromotor Control & Rehabilitation Core Concentration

This core concentration area of study consists of two facets: neuromotor science and motor control. Neuromotor science refers to knowledge about brain anatomy, biology, and physiology in relation to movement and movement disorders. Relevant techniques for research might include brain imaging, electromyography (EMG), neuropsychological approaches (e.g., galvanic skin conductance, heart rate variability), muscle ultrasound, peripheral nerve stimulation, and electroencephalography (EEG), each of which are available to the trainees. Motor control refers to knowledge about the principles of interaction between neural/physiological, biomechanical, behavioral and developmental systems underlying movement function and dysfunction that can inform rehabilitation assessments and interventions. Relevant techniques for research might include physiological and biomechanical analyses, adaptation and learning paradigms, and clinical tests of movement function.

Musculoskeletal Performance and Rehabilitation Cognate Area

This sub-concentration area of research involves the study of basic biological processes in muscle physiology, metabolism and cardiovascular exercise using human and animal models. It is a complementary area for those students who seek to investigate neuromotor rehabilitation in relation to peripheral muscle adaptation, to metabolic sequalae or to cardiovascular benefits from exercise and rehabilitation. Mentors in this area have a history of research relevant to rehabilitation/disability or aging. Trainees who wish to learn from this area will interact with trainees and resources from the Training Programs in Biology of Exercise and Aging and Muscle Biology located in the School of Medicine.

Rehabilitation Biomechanics Cognate Area

This sub-concentration area of research involves the application of mechanical principles to biological systems. It is a natural complementary area for those who want to quantify movement and/or electromyographic signals in a rigorous way. These efforts lead to a deeper understanding of motor deficits as well as providing more precise measurements of rehabilitation outcomes. Opportunities to learn computational modeling are also available. After learning basic principles, trainees will have the opportunity to choose from a variety of motion analysis systems and task-specific experimental paradigms in six different biomechanically based laboratories that are actively undertaking neuromotor, aging and rehabilitation research.

Rehabilitation Epidemiology Cognate Area

This sub-concentration area of research involves the study of the causes, treatments and prevention of disability using population-based data as well as data from smaller studies. Mentors in this area have expertise in biostatistics or in rehabilitation/disability and aging. This is a complementary area for those students who want to investigate neuromotor rehabilitation in relation to population-based/large data set research or in translational research taking laboratory rehabilitation methods into the community. Students will interact with trainees and resources from the Program in Epidemiology of Aging located in the School of Medicine.

Rehabilitation Engineering and Robotics Cognate Area

This sub-concentration area is rapidly developing and affords new opportunities to bring novel technologies and methods into Rehabilitation Science. In cooperation with the UM Pepper Center, that all support rehabilitation robotics this area of potential training involves relevant course work and interacting with engineers concerning the development of devices to augment both the evaluation and implementation of rehabilitative strategies targeting those with movement dysfunction. In addition, we have strong connections with UMCP engineering, National Rehabilitation Hospital and Catholic University of America, and local industries such as NextStep Robotics. Faculty, students and post-doctoral trainees are intimately involved in the development and testing of a variety of novel training devices employed in neuromotor rehabilitation research. Various robotic devices for the upper extremity are currently in the development and test phase, a bilateral upper arm training system designed and based on research by faculty is commercialized and in use, and novel devices for perturbation studies of balance and locomotion are being implemented and tested in funded research.